Skuska 3.6.2008

Skuska 3.6.2008

Příspěvekod oblacik » 3. 6. 2008 12:37

Skuska vyzerala presne ako to popisala Katka minule, takze len pridam svoje zadanie:

1) Spocitajte normu Tf = integral {-1 -> 0} f - integral {0 -> 1} f, kde f patri C([-1,1])
2) Spocitajte bodove spektrum, spektrum a zistite, ci je kompaktny operator T na priestore l^2 definovany T:{x_n} -> {i^n x_n}
3) Ukazte, ze na priestore C([0,1]) nejde zaviest skalarny sucin

Na ustnej ma skusal prof. Netuka, mala som dokazat Rieszovo lemma o skorokolmici a napisat jeho dosledky. Napisala som jeden dosledok aj s dokazom a stacilo.
oblacik
Matfyz(ák|ačka) level I
 
Příspěvky: 10
Registrován: 23. 6. 2006 12:15

Re: Skuska 3.6.2008

Příspěvekod kesy » 3. 6. 2008 22:43

1) norma funkcionalu na C[-1,1] Tf = 3 (f(1)-f(0))

2) norma, kompaktnost, spektrum an L(C[0,1]): Tf(x) = int _0 ^x f(t) dt - pre kompaktnost stacilo povedat, ze T je Volterrov

3) {e_n} ortonormalna baza separabilneho hilbertovho priestoru. zavedieme normu ||x||_e takto: ||x||_e = sum _k |x_k|/2^k.dokazte, ze tato norma nie je ekvivalentna so standardnou normou na hilbertovom priestore.
navod: uvedomte si, ze ||e_n||_e = 1/2^k
A gun is not a weapon, Marge, it's a tool. Like a butcher knife or a harpoon, or... or an alligator.
Homer Simpson
kesy
Matfyz(ák|ačka) level I
 
Příspěvky: 21
Registrován: 4. 2. 2006 23:19
Bydliště: Nitra


Zpět na Vybrané partie z funkcionální analýzy

Kdo je online

Uživatelé procházející toto fórum: Žádní registrovaní uživatelé a 0 návštevníků