Písemka Rataj 8.6.2010

Pokračování kurzu matematické analýzy pro studenty prvního ročníku informatiky, které obsahuje Riemannův integrál, posloupnosti a řady funkcí (včetně mocninných a Fourierových řad), metrické prostory.

Písemka Rataj 8.6.2010

Příspěvekod mrwep » 8. 6. 2010 16:01

Dnes zadání bylo:

1) Najděte primitivní funkci:
$\int\frac{\sin^2x}{2+\cos^2x}\,dx.$
(10 bodů)

2) Spočítejte délku části spirály v rovině zadané v polárních souřadnicích (x=r\cos \phi,\,y=r\sin\phi) rovnicí r=a\phi,\,0\leq\phi\leq\pi.
(a\geq0 je pevný parametr.)
(10 bodů)

3) Lze funkci
f(x,y)=\frac{x^3y^2}{x^4+y^{10}}
spojitě dodefinovat na celém \mathbb{R}^2?
(10 bodů)

4) Najděte lokální extrémy funkce
f(x,y)=x^3+y^3-3xy.
(10 bodů)

Všechny výpočty a odpovědi řádně zdůvodněte.
Na vypracování máte 120 minut. Požadované minimum: 20 bodů.
Při práci můžete používat pouze jeden vlastní popsaný list formátu A4 se vzorečky. Není povoleno používat mobily ani žádnou výpočetní techniku.
mrwep
Matfyz(ák|ačka) level I
 
Příspěvky: 19
Registrován: 13. 2. 2010 15:06
Typ studia: Informatika Bc.

Re: Písemka Rataj 8.6.2010

Příspěvekod Tomgr » 8. 6. 2010 17:54

Napsal by někdo prosím správný řešení tý trojky včetně zdůvoďnování kolem, na kterým se nejspíš dost lpí?
Tomgr
Matfyz(ák|ačka) level I
 
Příspěvky: 36
Registrován: 15. 2. 2010 16:06
Typ studia: Informatika Bc.

Re: Písemka Rataj 8.6.2010

Příspěvekod mrwep » 8. 6. 2010 19:13

Od někoho kdo dostal 10 bodů mi bylo řečeno, že si stačí dostadit x=y a poté x=y^2, jednou vyjde limita 0, podruhé 1, což by mělo stačit. To dáva smysl. Já zkoušel polární souřadnice, y=kx a y=kx^2, kde mi vycházely trochu divný věci, který jsem myslel, že zřejmě stačej k tomu, aby limita neexistovala, ale očividně ne.
mrwep
Matfyz(ák|ačka) level I
 
Příspěvky: 19
Registrován: 13. 2. 2010 15:06
Typ studia: Informatika Bc.


Zpět na MAI055 Matematická analýza II

Kdo je online

Uživatelé procházející toto fórum: Žádní registrovaní uživatelé a 1 návštěvník

cron