3. 6. 2014 - Rataj písemka

Pokračování kurzu matematické analýzy pro studenty prvního ročníku informatiky, které obsahuje Riemannův integrál, posloupnosti a řady funkcí (včetně mocninných a Fourierových řad), metrické prostory.

3. 6. 2014 - Rataj písemka

Příspěvekod Salmelu » 3. 6. 2014 17:34

1) Spočtěte
\int_0^{\pi / 2} e^{\sin x} \cos^3 x \; \mathrm{d} x

2) Spočtěte délku křivky parametrisované předpisem
\left( 3 \cos^3 t, 3 \sin^3 t \right)
pro t \in [0, 2\pi]

3) Spočtěte limitu (pokud existuje)
\lim_{(x,y) \rightarrow (0,0)} (1+xy)^{\frac{x}{x^2+y^2}}

4) Na elipse x^2 + xy + 2y^2 = 1 nalezněte nejbližší a nejvzdálenější bod od přímky x + y = 10.
Salmelu
Matfyz(ák|ačka) level I
 
Příspěvky: 3
Registrován: 3. 6. 2014 17:29
Typ studia: Informatika Bc.

Re: 3. 6. 2014 - Rataj písemka

Příspěvekod Návštěvník » 4. 6. 2014 12:39

Pro ty, kdo by si to počítali - první příklad vyjde 1 (substituce+per partes), druhý z hlavy nevím, ale výsledkem je také nějaké číslo, alespoň v mém postupu nutno rozdělit na 4 integrály podle toho, kde je sin záporný a kde kladný. 3. příklad - limita vyjde 0, lze odhadnout pomocí lim log(1+x)/x pro x->0.
Návštěvník
 

Re: 3. 6. 2014 - Rataj písemka

Příspěvekod Návštěvník » 4. 6. 2014 17:52

Návštěvník píše:3. příklad - limita vyjde 0, lze odhadnout pomocí lim log(1+x)/x pro x->0.

Spíše bych řekl, že to vyjde 1 (na vyvrácení tvého výsledku stačí vzít přímku x=0 => 1^0=1). Odhadnout se to dá prozkoušením různých hodnot, dokázat poté převodem do polárních souřadnic.
Návštěvník
 

Re: 3. 6. 2014 - Rataj písemka

Příspěvekod Návštěvník » 4. 6. 2014 17:58

kdyz uz pisi - 4 staci polozit implicitni derivace elipsy rovno smernici primky. Formalni argument = Smernice tecny v prislusnem bode musi byt rovnobezna s primkou, jinak by existovalo okoli bodu, na nemz se krivka (elipsa) blizi primce, a nemuze se tedy jednat o extrem co do vzdalenosti. Vysledek mi vysla pomerne nehezka odmocnina (neco ve smyslu 1/14^(1/2) a 3/14^(1/2)). Pozor - implicitni zderivovani cele elipsy vede na ztratu nekterych udaju (funkce z jedne souradnice na jinou neni prosta!) - nutno zduvodnit a provest zkousku rozborem pripadu.
Návštěvník
 

Re: 3. 6. 2014 - Rataj písemka

Příspěvekod Návštěvník » 8. 6. 2014 18:25

3. příklad mi taky vychází, že je to 1. S policajtama, i bez polárních souřadnic. Proč ale wolfram tvrdí, že to nemá limitu? http://www.wolframalpha.com/input/?i=li ... 1%2Bx*y%29^%28x%2F%28x^2%2By^2%29%29
Návštěvník
 


Zpět na MAI055 Matematická analýza II

Kdo je online

Uživatelé procházející toto fórum: Žádní registrovaní uživatelé a 1 návštěvník