Pisemka Gregor 3.11.2011

Výroková logika, normální tvary formulí, predikátová logika, věty o úplnosti výrokové a predikátové logiky, prenexní tvary formulí, modely teorií 1. řádu. Meze formální metody, Gödelovy věty.

Pisemka Gregor 3.11.2011

Příspěvekod mathemage » 12. 11. 2011 11:28

1) Uvedte definici isomorfismu struktur \mathcal{A} = <A, F^A, R^A> a \mathcal{B} = <B, F^B, R^B>, kde F je n-arni funkcni symbol a R je n-arni relacni symbol.
2) Uvazme jazyk L = <c_1, c_2, c_3> s rovnosti, kde c_1, c_2, c_3 jsou konstantni symboly. Kolik ma neisomorfnich spocetnych modelu? (B_3 = 5, isomorfismus jednoznacne urcen ekvivalenci \{c_1, c_2, c_3\}/=, neb nas zajima jen, ktera konstanta se rovna ktere, a to urcuje prave treti Bellovo cislo)
3) Necht \mathcal{G} = <G, +, -, 0> je komutativni grupa. Je kazda jeji podstruktura take komutativni grupou? (Ano. - Teorie komutativnich grup je otevrena, tj. ma same nekvantifikovane formule. Kazda podstruktura kazdeho modelu kazde otevrene formule je opet modelem teto teorie.)
Carpe Diem!
mathemage
Matfyz(ák|ačka) level III
 
Příspěvky: 130
Registrován: 14. 1. 2011 10:03
Typ studia: Informatika Ph.D.
Login do SIS: had

Zpět na AIL062 Výroková a predikátová logika

Kdo je online

Uživatelé procházející toto fórum: Žádní registrovaní uživatelé a 1 návštěvník