14.1.2014 - Dvořák

Základy lineární algebry (vektorové prostory, lineární zobrazení, řešení soustav lineárních rovnic, matice).

14.1.2014 - Dvořák

Příspěvekod Jenda_ » 27. 1. 2014 14:51

Nikdo?

1. Napište definici afinního podprostoru. Dokažte, že množina řešení soustavy Ax = b je buď prázdná, nebo tvoří af. podprostor.Nalezněte všechna řešení soustavy rovnic: (5 lineárních rovnic s 5 neznámými)

2. Napište definici pojmů grupa a podgrupa. Najděte všechny podgrupy Z_6 s operací sčítání.

3. Napište definici jádra a obrazu lin. zobr. Nalezněte báze prostorů Im(f) a Ker(f): (zadáno nějaké zobrazení f)

4. U = L{(1,2,3,4),(2,2,3,5)} je podprostor R^4 . Najděte bázi nějakého V, že dim V = 2 a U \cap V = {(0,0,0,0)}

5. Napište definici regulární matice. Dokažte, že matice A je regulární právě tehdy, když A^T je regulární.
Jenda_
 

Zpět na MAI057 Lineární algebra I

Kdo je online

Uživatelé procházející toto fórum: Žádní registrovaní uživatelé a 1 návštěvník