26.1.2012 Hladík

Základy lineární algebry (vektorové prostory, lineární zobrazení, řešení soustav lineárních rovnic, matice).

26.1.2012 Hladík

Příspěvekod Danstahr » 26. 1. 2012 19:32

Varianta A :

1) Formulujte a dokažte Steinitzovu větu o výměně.

2) Nad tělesem \mathbb{Z}_{5} uvažujme

A=\left(\begin{array}{ccc}3 & 0 & 1\\2 & 1 & 2\\1 & 3 & 2\end {array}\right)$$B=\left(\begin{array}{ccc}0 & 3 & 0\\2 & 0 & 1\\4 & 2 & 0\end{array}\right)

Určete dimenzi a najděte bázi prostoru matic

V = \{X \in \mathbb{Z}_{5}^{3\times3}  |  AX = BX \}

3) Buď B báze \mathbb{R}^{3} skládající se z vektorů v_1 = {(1, -1, 1)}^{T}, v_2 = {(0, 1, -2)}^{T}, v_3 = {(1, -1, 0)}^{T}.


  • Uvažme zobrazení, které každému vektoru x \in \mathbb{R}^{3} se souřadnicemi [x]_B = (\alpha, \beta, \gamma) přiřadí vektor {\alpha}v_1 + {\beta}v_2. Ukažte, že toto zobrazení je lineární a najděte jeho matici vzhledem ke kanonické bázi.

  • Dokažte, že každý vektor x \in \mathbb{R}^{3} se dá jednoznačně rozepsat jako x = y + z, kde y \in span(x_1, v_2) a z \in span(v_3)


4)Rozhodněte a zdůvodněte, která z následujících tvrzení jsou pravdivá :


  • Je-li A, B, C \in \mathbb{R}^{n{\times}n} a ABC = I_n, pak také CAB \in I_n.

  • Buďte U, V podprostory W, u_1,...,u_n báze U a v_1,...,v_m báze V. Potom u_1,...,u_n,v_1,...,v_m je báze U+V.

  • Pro každou matici A \in \mathbb{R}^{n{\times}n} a k \in \mathbb{N} platí rank(A^k) \geq rank(A^{k+1}).

  • Buď f:\mathbb{R}^{n} \mapsto \mathbb{R}^{m} lineární zobrazení, jehož matice vůči nějaké bázi má hodnost m. Potom f je prosté.


Za případné překlepy se omlouvám.
Danstahr
Matfyz(ák|ačka) level I
 
Příspěvky: 12
Registrován: 26. 1. 2012 18:50
Typ studia: Informatika Bc.
Login do SIS: 62601319

Re: 26.1.2012 Hladík

Příspěvekod Návštěvník » 26. 1. 2012 23:58

Víte někdo, jak spočítat tu dvojku?
Návštěvník
 

Re: 26.1.2012 Hladík

Příspěvekod Mihulik » 27. 1. 2012 09:20

AX=BX => AX - BX = O => (A-B)X = O a ukázat, že A-B je regulární. Pak už je řešení jasné:)
Mihulik
Matfyz(ák|ačka) level II
 
Příspěvky: 53
Registrován: 20. 5. 2011 18:13
Typ studia: Matematika Mgr.

Re: 26.1.2012 Hladík

Příspěvekod Návštěvník » 27. 1. 2012 11:24

Vyšlo mi A-B, že není reg. Co teď?
Návštěvník
 


Re: 26.1.2012 Hladík

Příspěvekod Mihulik » 27. 1. 2012 18:47

Návštěvník píše:Vyšlo mi A-B, že není reg. Co teď?

Tak vyjádříme řešení homogenní soustavy a podle toho vidíme bázi a tedy i její velikost:)

Omlouvám se, jak jsem to rychle prolétl, tak jsem myslel, že je regulární.
Mihulik
Matfyz(ák|ačka) level II
 
Příspěvky: 53
Registrován: 20. 5. 2011 18:13
Typ studia: Matematika Mgr.


Zpět na MAI057 Lineární algebra I

Kdo je online

Uživatelé procházející toto fórum: Žádní registrovaní uživatelé a 1 návštěvník