Zkouska 1.6.

Zkouska 1.6.

Příspěvekod Milan » 1. 6. 2006 11:53

Zadani:

1. Spoctete 2-rozmernou miru mnoziny M = {[x,y,z] \in R^3, sqrt{|y|}<x<1,z=log(1/x)}.

2. Spoctete 3-rozmernou miru (objem) mnoziny M = {[x,y,z] \in R^3, (x^2+y^2+z^2)^(5/2) < x^2+y^2-z^2}.

3. Urcete definicni obor, a derivaci (pripadne i jednostranne) nasledujiciho integralu zavisleho na parametru F(a) = \int_0^1 arcsin (ax)/x dx.
Milan
Matfyz(ák|ačka) level I
 
Příspěvky: 6
Registrován: 21. 6. 2005 13:47

Zpět na Teorie míry a integrálu II

Kdo je online

Uživatelé procházející toto fórum: Žádní registrovaní uživatelé a 1 návštěvník