
BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 1

Extendible Hashing

Database Systems Concepts

Silberschatz/ Korth

Sec. 11.5-11.7

Fundamentals of Database Systems

Elmasri/Navathe

Sec. 5.9

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 2

2

Overview

Static
Hashing

ExampleTerminology

Buckets Hash
Function

Example

Overflow

Problems

Binary
Addressing

Binary
Hash Function

Example

Extendible
Hash Index

Structure

Inserting
Simple Case

Inserting
Complex Case

1

Inserting
Complex Case

2

Advantages
Disadvantages

What is an example
of static hashing?

What is the
terminology?

What are the
problems of
static hashing?

What are the
major concepts?

What happens when
buckets fill up?

What is an example
of a static hash function?

What is a solution
to these problems?

How is binary
addressing used?

What is an example
of binary hashing?

How is the
binary hash
function used?

What is the structure
of an extendible hash index?

How is inserting performed
in an extendible hash index?

What are the
advantages and
disadvantages?

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 3

3

Static Hashing

• Problem
– Given a key value k

– Locate a record r identified by k

• Solution

Hash
Functionk pointer to r

• One problem with tree index structures, for example, the B+-Tree, is that
the index tree must be searched every time a record is sought.

• Hashing attempts to solve this problem by using a function, for example, a
mathematical function, to calculate the address of a record from the value
of its primary key.

• Static hashing uses a single function to calculate the position of a record in
a fixed set of storage locations.

Ref: Silberschatz, sec 11.5; Elmasri, sec 5.9.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 4

4

Example

Hash
Functionk

Produces pointer
to record identified

by k

Locations in File
Pointer to record
location

1
2
3
4

• Locating the position of a record identified by value k involves applying
the hash function to k.

• The result of the hash function, called a hash address, is a pointer to the
location in the file that should contain the record.

• When there are many possible records compared to the number of
locations, it is possible for the hash function to point to the same location
for two records, called a collision.

• A good hash function will limit the number of records with the same
hashed address.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 5

5

Terminology

• Hash Function
– Function used to do the hashing

– e.g. f(k) = location

• Key Space
– Possible key values

– e.g. All possible surnames

• Address Space
– Possible file locations

– e.g. 10 blocks, each with 10 records

• A hash function is applied to a key value and returns the location in a file
where the record should be stored.

• For example, a function f when applied to a key value k, i.e. f(k)
will return the address of the record identified by k.

• The key space is the set of all the key values that can appear in the database
being indexed using the hash function. Elmasri et al calls the key space the
hash field space.

• For example, the key space for a student database will consist of
the student numbers of all students to be stored in the database.

• The address space is the set of all locations in the file that will store the
database.

• For example, a file that consists of an address space of twenty has
twenty locations in which to store records.

• The size of the key space will normally be larger than the size of the
address space.

• For example, although the address space of students may consist of
6000 students, the library may assume that only 4000 students will
borrow books at any one time. Using this assumption the library
will allocate an address space of 4000.

• A hash function must be able to place any of the 6000 students into
one of the 4000 addresses available.

Ref: Elmasri, sec 5.9; Silberschatz, sec 11.5.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 6

6

Overview

Static
Hashing

ExampleTerminology

Buckets Hash
Function

Example

Overflow

Problems

Binary
Addressing

Binary
Hash Function

Example

Extendible
Hash Index

Structure

Inserting
Simple Case

Inserting
Complex Case

1

Inserting
Complex Case

2

Advantages
Disadvantages

What is an example
of static hashing?

What is the
terminology?

What are the
problems of
static hashing?

What are the
major concepts?

What happens when
buckets fill up?

What is an example
of a static hash function?

What is a solution
to these problems?

How is binary
addressing used?

What is an example
of binary hashing?

How is the
binary hash
function used?

What is the structure
of an extendible hash index?

How is inserting performed
in an extendible hash index?

What are the
advantages and
disadvantages?

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 7

7

Buckets

Record 1
Record 2
Record 3

Location 1078

A Bucket

A hash function can produce the
same address for different key values.

Hash indexes store records in buckets.

• Like a B+-Tree, which stores records in blocks or pages on the disc, a hash
index stores records in blocks called buckets.

• A bucket has a unique location address and may contain several records.

• A hash function must convert a key value into a bucket address. Two or
more key values may map to the same bucket.

• In the above example, records 1, 2 and 3 returned the same hash address
(1078) when the hash function has been applied to them.

Silberschatz, sec 11.5.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 8

8

Overflow

24
36

64
33

55
20

101
95

Overflow
Chain

B1

B2

B3

B4 To B4

B2 has filled up
and overflowed.

B2 contains a pointer to B4
which contains the rest of
the keys that overflowed

from B2.

• It is possible for a hash function to try to put too many records into a
bucket.

• In this case, it is necessary to use an overflow bucket.

• An overflow bucket contains records that will not fit into the bucket in
which they have been placed by the hash function.

• Overflow buckets are undesirable because they make the length of a search
unpredictable.

• Instead of the hash function producing the address of the bucket containing
the record, the hash function gives the address of the first bucket in a chain
of buckets. One bucket in the chain will contain the record.

• For instance, in the above example, two buckets must be read from the disc
to find key 95, but only one bucket must be read from the disc to find key
36.

Ref: Elmasri, sec 5.9.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 9

9

Hash Function

• Properties
– Uniform Distribution

• Each bucket should contain the same number of keys
from all possible keys.

– Random Distribution
• Each bucket should contain the same number of keys.

• Korth et al states that a good hash function should have two properties:

• Uniform distribution A hash function should ensure that each
bucket contain keys from all parts of the key space. For example, a
good hash function for names would ensure that each bucket had a
set of names which began with letters from all parts of the alphabet.

• Random distribution A hash function should distribute key values
equally among the index locations. That is, each bucket should
have approximately the same number of keys.

• These properties help to guarantee a good distribution of key values across
all the buckets in the index.

Ref: Silberschatz, sec 11.5.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 10

10

Example Hash Function

()

()
()

f k k N

k key value

N number of buckets

f key in location

f key in location

=
=
=

= = →
= = →

mod

mod

mod

17 17 10 7 17 7

23 23 10 3 23 3

*mod - reminder after division

• A common hash function is the f(k)=k mod N function which calculates the
location by using the remainder resulting from dividing the key by the
number of buckets.

• If the key is not a number then it is converted to a number, for example, by
using the ASCII code of the letters in the key.

Ref: Elmasri,sec 5.9.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 11

11

Overview

Static
Hashing

ExampleTerminology

Buckets Hash
Function

Example

Overflow

Problems

Binary
Addressing

Binary
Hash Function

Example

Extendible
Hash Index

Structure

Inserting
Simple Case

Inserting
Complex Case

1

Inserting
Complex Case

2

Advantages
Disadvantages

What is an example
of static hashing?

What is the
terminology?

What are the
problems of
static hashing?

What are the
major concepts?

What happens when
buckets fill up?

What is an example
of a static hash function?

What is a solution
to these problems?

How is binary
addressing used?

What is an example
of binary hashing?

How is the
binary hash
function used?

What is the structure
of an extendible hash index?

How is inserting performed
in an extendible hash index?

What are the
advantages and
disadvantages?

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 12

12

Problems with Static Hash Functions

• f(k) is based on the number of buckets
– e.g. ‘f(k)=k mod N’ uses the number of buckets

• The number of buckets is fixed.
– Because the hash function uses the number of

buckets, the number must be fixed.

• The number of buckets must be decided in
advance.
– Because the number of buckets must be fixed,

the number must be decided in advance.

• A static hash function such as ‘f(k)=k mod N’ uses the number of buckets
in the file to calculate the hashed key.

• This means that the number of buckets in the file must be known in
advance and must remain unchanged for the lifetime of the file.

• To use a static hash function there are three main options:

• Base the hash function on the current number of records in the file.
This will not be suitable if the number of records changes.

• Base the hash function on the anticipated number of records in the
file. This will not be suitable if estimates of the file size are
incorrect.

• Periodically re-organise the file and change the hash function.
When a new hash function is created, all the record locations must
be re-calculated.

• Alternatively, the hash function could be designed to change automatically
as the file size grows and shrinks.

Ref: Silberschatz sec 11.6.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 13

13

Binary Addressing

One bucket

Address: 0

Two buckets

Address: 0

Address: 1

Three buckets

Address: 00

Address: 01

Address: 10

One bucket needs no address

Two buckets need one binary
digit, 0 or 1

Three/Four buckets need two
binary digits, 00, 01, 10 or 11.

• Using binary addressing, the number of buckets that can be addressed may
be doubled by adding one digit to the address.

• For instance, in the example above one binary digit can address two
buckets, 0 and 1. Two binary digits can address four buckets, 00, 01, 10
and 11.

• Therefore, a hash function that grows and shrinks could be one that
generates a binary code for each key value. The bucket address can be
identified from the binary code.

• For example, if the extendible hash function generated a 32-bit code and
the index currently has two buckets then the first binary digit should
provide the bucket address. If the index currently has three or four buckets
then the first two binary digits should provide the bucket address.

Ref: Silberschatz, sec 11.6; Elmasri, sec 5.9.3.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 14

14

Binary Hash Function

Town f(Town)

Brighton 0010

Clearview 1101

Downtown 1010

Mianus 1000

Perryridge 1111

Redwood 1011

Round Hill 0101

• Assume that it is possible to generate a binary value for any key value.

• A hash function that generates a binary address can use the ASCII
codes of the letters in the key value. For example, the ASCII code
of ‘A’ is 65 or 1000001 (binary).

• As with a static hash function, an ideal binary hash function must
produce a uniform and random distribution of the keys.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 15

15

Example

Insert Brighton

Brighton

Address : 0

Insert Clearview

Clearview

Address : 0Brighton

‘Brighton’ is inserted
in bucket one.

‘Clearview’ is also
inserted in
bucket one.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 16

16

Example

Insert Downtown

Address : 0

Brighton

Clearview

Address : 1Downtown

‘Downtown’ could not be
inserted into bucket 0.

Bucket 0 was split to create
buckets 0 and 1.

‘Brighton’ (0010) is inserted
into bucket 0 and ‘Downtown’
(1010) and ‘Clearview’ (1101)

are inserted into bucket 1.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 17

17

Example

Insert Mianus
Address : 00

Brighton

Clearview

Address : 11

Mianus

Address : 10Downtown

‘Mianus’ could not be
inserted into bucket 1.

Bucket 1 was split to create
buckets 10 and 11.

‘Downtown’ (1010) and
‘Mianus’ (1000) are

inserted into bucket 10 and
‘Clearview’ (1101) is
inserted into bucket 11.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 18

18

Example

Insert Mianus
Address : 00

Brighton

Clearview

Address : 11

Mianus

Address : 10Downtown

All records with hashed
key beginning 0.

All records with hashed
key beginning 10.

All records with hashed
key beginning 11.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 19

19

Overview

Static
Hashing

ExampleTerminology

Buckets Hash
Function

Example

Overflow

Problems

Binary
Addressing

Binary
Hash Function

Example

Extendible
Hash Index

Structure

Inserting
Simple Case

Inserting
Complex Case

1

Inserting
Complex Case

2

Advantages
Disadvantages

What is an example
of static hashing?

What is the
terminology?

What are the
problems of
static hashing?

What are the
major concepts?

What happens when
buckets fill up?

What is an example
of a static hash function?

What is a solution
to these problems?

How is binary
addressing used?

What is an example
of binary hashing?

How is the
binary hash
function used?

What is the structure
of an extendible hash index?

How is inserting performed
in an extendible hash index?

What are the
advantages and
disadvantages?

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 20

20

Extendible Hash Index

Round Hill
Brighton

Mianus

Downtown
Redwood

Perryridge
Clearview

000
001
010
011
100
101
110
111

3 1

3

3

2

Directory

Buckets

B1

B2

B3

B4

• An extendible hash index consists of two parts:

Buckets Buckets are disc pages/blocks that are read and written by the
system. The buckets have a physical address on the disc and
contain a fixed number of records.

Directory The directory indexes the buckets using a binary code. The
directory consists of two parts:

1. A binary code which results from the hash function.

2. A pointer to the bucket containing records matching the
binary code.

Two directory entries may point to the same record.

• To search for a record, for example, ‘Downtown’:

1. Apply the hash function to ‘Downtown’, f(Downtown)=1010.

2. Search the directory for 101.

3. Read the bucket identified by the 101 pointer (B3).

Ref: Silberschatz sec 11.6.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 21

21

Extendible Hash Index

Round Hill
Brighton

Mianus

Downtown
Redwood

Perryridge
Clearview

000
001
010
011
100
101
110
111

3 1

3

3

2

Directory

Buckets

B1

B2

B3

B4

All records with hashed
key beginning 0.

All records with hashed
key beginning 100.

All records with hashed
key beginning 101.

All records with hashed
key beginning 11.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 22

22

Structure

Round Hill
Brighton

Mianus

Downtown
Redwood

Perryridge
Clearview

000
001
010
011
100
101
110
111

3 1

3

3

2

Directory

Buckets

B1

B2

B3

B4

Round Hill
Brighton

Mianus

Downtown
Redwood

Perryridge
Clearview

000
001
010
011
100
101
110
111

Directory

Buckets

B1

B2

B3

B4

i i1

i2

i3

i4

• Each entry in the directory contains a sequence of binary bits. The number
of significant binary bits, that is, the number currently used in the index, is
called i.

• Each bucket also has a significant number of bits called i j. ij represents the
number of bits in the directory that are used to identify the bucket.

• The search algorithm uses the significant number of bits in the directory to
determine which bucket to read. For example, to search for ‘Downtown’:

1. Apply the hash function to ‘Downtown’, f(Downtown)=1010. The
hash function may always return a fixed number of binary bits. (In
this case, the hash function returns four bits.)

2. Search the directory, which has three significant bits, for an entry
matching 101 (the first three bits of ‘Downtown’).

3. Read the bucket identified by the 101 pointer, that is, B3.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 23

23

Overview

Static
Hashing

ExampleTerminology

Buckets Hash
Function

Example

Overflow

Problems

Binary
Addressing

Binary
Hash Function

Example

Extendible
Hash Index

Structure

Inserting
Simple Case

Inserting
Complex Case

1

Inserting
Complex Case

2

Advantages
Disadvantages

What is an example
of static hashing?

What is the
terminology?

What are the
problems of
static hashing?

What are the
major concepts?

What happens when
buckets fill up?

What is an example
of a static hash function?

What is a solution
to these problems?

How is binary
addressing used?

What is an example
of binary hashing?

How is the
binary hash
function used?

What is the structure
of an extendible hash index?

How is inserting performed
in an extendible hash index?

What are the
advantages and
disadvantages?

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 24

24

Inserting - Simple Case

Round Hill
Brighton

Mianus

Downtown
Redwood

Perryridge
Clearview

000
001
010
011
100
101
110
111

3 1

3

3

2

Directory

Buckets

B1

B2

B3

B4

Insert ‘Poole’
f(Poole)=1001

Round Hill
Brighton

Mianus

Downtown
Redwood

Perryridge
Clearview

000
001
010
011
100
101
110
111

3 1

3

3

2

Directory

Buckets

B1

B2

B3

B4

Poole

When buckets are not full, inserting is simple.

• When inserting a new record, a search is performed to locate the position
for the record.

• If the bucket that should contain the record is less than full, then the record
can be inserted into the bucket.

• The structure of the index does not change.

• In the example above, the key ‘Poole’ could be inserted into bucket B2
because B2 had a free space.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 25

25

Inserting - Complex Case 1

Round Hill
Brighton

Mianus

Downtown
Redwood

Perryridge
Clearview

000
001
010
011
100
101
110
111

3 1

3

3

2

Directory

Buckets

B1

B2

B3

B4

Poole

B3 split

The size of the
directory has doubled.

Insert ‘Bournemouth’
f(Bournemouth)=1010

0100

Round Hill
Brighton

Mianus

Downtown
Bournemth

Perryridge
Clearview

0000
0001
0010
0011

0101
0110
0111

4
1

3

4

2

B1

B2

B3

B4

1100

1000
1001
1010
1011

1101
1110
1111

Redwood

4
B5

Poole

• In the example above, ‘Bournemouth’, which should be inserted into B3,
could not be inserted because B3 was full.

• B3 has been split to created a new bucket B5.

• In the old index, only one pointer pointed to B3, that is, i=ij (3=3). The
number of significant bits required to identify the bucket was the same as
the number of significant bits in the directory.

• To increase the number of pointers in the directory, a new bit is added to
the directory. This has the effect of doubling the size of the directory.

• The result of inserting ‘Bournemouth’ is that the number of significant bits
in the directory is four. This means that there are twice the number of
pointers.

• The contents of B3 have been redistributed between B3 and B5 according
to their hashed values.

• The number of significant bits in B3 and B5 (i1=3, i5=3) is increased by one
digit (i1=4, i5=4).

Ref: Silberschatz sec 11.6.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 26

26

Inserting - Complex Case 2

0100

Round Hill
Brighton

Mianus

Downtown
Bournemth

Perryridge
Clearview

0000
0001
0010
0011

0101
0110
0111

4
1

3

4

2

B1

B2

B3

B4

1100

1000
1001
1010
1011

1101
1110
1111

Redwood

4
B5

Poole

0100

Brighton

Mianus

Downtown
Bournemth

Perryridge
Clearview

0000
0001
0010
0011

0101
0110
0111

4 2

3

4

2

B1

B2

B3

B4

1100

1000
1001
1010
1011

1101
1110
1111

Redwood

4
B5

Round Hill
Ipswich

2
B6

Poole

Insert ‘Ipswich’
f(Ipswich)=0101

The directory size
is the same.

B1 split

• The position for ‘Ipswich’ is in bucket B1.

• When ‘Ipswich’ is inserted into B1, B1 must be split because it is full.
Splitting B1 creates B6.

• However, the number of significant bits in B1, (i1=1), is less than the
number of significant bits in the directory, (i=4). This means that there is
more than one pointer pointing at B1.

• Therefore, instead of doubling the size of the directory, the pointers
pointing at B1 can be redistributed between B1 and B6.

• The contents of B1 are also redistributed according to their hashed code.

• The number of significant bits in B1 and B6 (i1=2, i6=2) is increased by one
digit (i1=3, i6=3).

Ref: Silberschatz sec 11.6.

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 27

27

Overview

Static
Hashing

ExampleTerminology

Buckets Hash
Function

Example

Overflow

Problems

Binary
Addressing

Binary
Hash Function

Example

Extendible
Hash Index

Structure

Inserting
Simple Case

Inserting
Complex Case

1

Inserting
Complex Case

2

Advantages
Disadvantages

What is an example
of static hashing?

What is the
terminology?

What are the
problems of
static hashing?

What are the
major concepts?

What happens when
buckets fill up?

What is an example
of a static hash function?

What is a solution
to these problems?

How is binary
addressing used?

What is an example
of binary hashing?

How is the
binary hash
function used?

What is the structure
of an extendible hash index?

How is inserting performed
in an extendible hash index?

What are the
advantages and
disadvantages?

BBIT4/SEM4 Advanced Database Systems

© Stephen Mc Kearney, 2002. 28

Advantages
• Performance does not degrade as file size increases

• Stores the minimum number of buckets

• Number of buckets grows/shrinks dynamically

Disadvantages
• The directory must be searched.

• The directory must be stored.

